Descartes’ Rule for Trinomials in the Plane and Beyond

نویسنده

  • TIEN-YIEN LI
چکیده

We prove that any pair of bivariate trinomials has at most 5 isolated roots in the positive quadrant. The best previous upper bounds independent of the polynomial degrees counted only non-degenerate roots and even then gave much larger bounds, e.g., 248832 via a famous general result of Khovanski. Our bound is sharp, allows real exponents, and extends to certain systems of n-variate fewnomials, giving improvements over earlier bounds by a factor exponential in the number of monomials. We also derive new bounds on the number of real connected components of fewnomial hypersurfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Descartes’ Rule for Trinomials in the Plane and Beyond

We prove that any pair of bivariate trinomials has at most 5 isolated roots in the positive quadrant. The best previous upper bounds independent of the polynomial degrees counted only non-degenerate roots and even then gave much larger bounds, e.g., 248832 via a famous general result of Khovanski. Our bound is sharp, allows real exponents, and extends to certain systems of n-variate fewnomials....

متن کامل

m at h . C O ] 9 A ug 2 00 0 Descartes ’ Rule for Trinomials in the Plane and Beyond ∗

We prove that any pair of bivariate trinomials has at most 16 roots in the positive quadrant, assuming there are only finitely many roots there. The best previous upper bound independent of the polynomial degrees (following from a general result of Khovanski with stronger non-degeneracy hypotheses) was 248,832. Our proof allows real exponents and extends to certain systems of n-variate fewnomials.

متن کامل

Real root isolation for exact and approximate polynomials using Descartes' rule of signs

Collins und Akritas (1976) have described the Descartes method for isolating the real roots of an integer polynomial in one variable. This method recursively subdivides an initial interval until Descartes’ Rule of Signs indicates that all roots have been isolated. The partial converse of Descartes’ Rule by Obreshkoff (1952) in conjunction with the bound of Mahler (1964) and Davenport (1985) lea...

متن کامل

Roots of Trinomials over Prime Fields

The origin of this work was the search for a “Descartes’ rule” for finite fields a nontrivial upper bound for the number of roots of sparse polynomials. In [2], Bi, Cheng, and Rojas establish such an upper bound. Then, in [3], Cheng, Gao, Rojas, and Wan show that the bound is essentially optimal in an infinite number of cases by constructing t-nomials with many roots in Fpt . However, the bound...

متن کامل

In Plane Vibration of Pyrimidine and some Deuterated Pyrimidines

On the basis of 102 assigned frequencies to in plane vibrations of pyrimidine, pyrimidine-2-d2, pyrimidine-2, 5-d2, pyrimidine-4,6-d2, pyrimidine-2,4,6-d3 and pyrimidine-d4, 35 valance force field constants including 14 principals and 21 interaction force constants are calculated. New assignments are suggested for n<su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001